
Issue

45
2021

Analyzing the Performance of
Reduction Operations in Data
Parallel C++
Heterogeneous Processing Requires Data
Parallelization: SYCL* and DPC++ Are a Good Start

OpenMP* Accelerator Offload

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

2The Parallel UniverseContents
F

E
A

T
U

R
E

Letter from the Editor

Heterogeneous Processing Requires Data Parallelization: SYCL* and
DPC++ Are a Good Start

Analyzing the Performance of Reduction Operations in Data Parallel C++
More on Tuning the Common Reduction Parallel Pattern

OpenMP* Accelerator Offload
Portability Across Heterogenous Architectures

Optimizing Distributed AI Training Using Intel® oneAPI Toolkits
Incremental Tuning Can Yield Significant Performance Improvements

The Role and Potential of CPUs in Deep Learning

MiniNAS Neural Architecture Search Using SigOpt and Ray Tune
Systematically Search Model Architectures with SigOpt

Performance Optimizations for End-to-End AI Pipelines
Optimized Frameworks and Libraries for Intel® Processors

Optimizing CatBoost Performance by Up to 4x
Tricks to Improve Machine Learning Training Performance

3

5

9

21

29

37

40

50

57

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

3The Parallel Universe

Big Announcements at ISC 2021!
Trish Damkroger’s (Intel Vice President and General Manager, High Performance Computing)
keynote at the 2021 International Supercomputing Conference (ISC) covered several
new products and product enhancements. I can’t cover them all here (see New Intel XPU
Innovations Target HPC and AI for more details), but I’m particularly enthusiastic about two
of them. First, Intel’s Xe-HPC-based discrete GPU (codenamed Ponte Vecchio, PVC) has
powered-on. I’m enjoying experimenting with oneAPI on integrated GPUs, but I’m anxious
to run production-scale workloads on PVC. Second, integrated high-bandwidth memory
(HBM) and Intel® Advanced Matrix Extensions (AMX) are coming in the next generation of
Xeon Scalable processors (codenamed Sapphire Rapids, SPR). Vectorization with the Intel®
Advanced Vector Extensions (AVX) already make Xeon an accelerator in its own right, but
HBM and AMX will make Xeon-based acceleration even more effective.

We have a mix of topics in this issue – everything from low-level performance tuning in
Data Parallel C++ to simple but effective tricks to boost AI performance. On the oneAPI
and heterogeneous parallelism side of the spectrum, our feature article, Analyzing the
Performance of Reduction Operations in Data Parallel C++, is a continuation of the in-
depth analysis from the previous issue of The Parallel Universe (see Reduction Operations in
Data Parallel C++). We also have a guest editorial from our editor emeritus, James Reinders:
Heterogeneous Processing Requires Data Parallelization. OpenMP Accelerator Offload
shows you how to convert OpenACC to the more portable OpenMP standard and provides
tips to improve OpenMP offload performance.

On the data analytics side of the topic spectrum, we have another guest editorial, this one
from Professor Sparsh Mittal (Indian Institute of Technology – Roorkee) on The Role and
Potential of CPUs in Deep Learning. From there, we have two articles on tuning neural
network training performance: Optimizing Distributed AI Training Using Intel® oneAPI
Toolkits and MiniNAS Neural Architecture Search Using SigOpt and Ray Tune. We
close with two articles that show how to drastically improve classical machine learning

3The Parallel Universe

Letter from the Editor
Henry A. Gabb, Senior Principal Engineer at Intel Corporation, is a longtime high-performance and
parallel computing practitioner who has published numerous articles on parallel programming. He
was editor/coauthor of “Developing Multithreaded Applications: A Platform Consistent Approach”
and program manager of the Intel/Microsoft Universal Parallel Computing Research Centers.

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

4The Parallel Universe

performance using the Intel® oneAPI AI Analytics Toolkit and off-the-shelf packages that
contain Intel optimizations: Performance Optimizations for End-to-End AI Pipelines and
Optimizing CatBoost Performance by Up to 4x.

As always, don’t forget to check out Tech.Decoded for more information on Intel solutions
for code modernization, visual computing, data center and cloud computing, data science,
systems and IoT development, and heterogeneous parallel programming with oneAPI.

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

5The Parallel Universe

[Note that this article was originally published at The New Stack.]

I like to say that “It’s all about XPUs.”

We are in a wonderful time when hardware innovation is leading to an explosion in CPUs, GPUs,
FPGAs, DSPs, ASICs, and more—which I simply abbreviate as XPUs. XPUs is shorthand for any
type of “processing unit”—any hardware that can help my application compute.

As developers, the onslaught of XPUs means that we are increasingly challenged to code for
a larger collection of diverse processing units. We are tasked with factoring in extra time, and
money, to rewrite and test code to boost application performance for new architectures. More
than ever, to preserve our sanity and the maintainability of our code, it is paramount that the

James Reinders, Editor Emeritus, The Parallel Universe

Heterogeneous
Processing Requires Data
Parallelization: SYCL* and
DPC++ Are a Good Start

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

6The Parallel Universe

code we write is applicable to as many XPUs as possible. Moving to cross-architecture models for
application development has shown that this can save organizations significant time and money,
and this becomes an even more pressing concern with the rise in popularity of heterogeneous
computing.

Underway today is a rethinking because our world is rapidly becoming a world of XPUs that will
eventually transform all of computing.

XPUs: Reinventing Software for Accelerated Compute
CUDA*, a widely used proprietary software programming system, was designed and is effective
for NVIDIA* GPUs. OpenCL™ took an open approach and achieved a certain level of multivendor
support. OpenCL had its own shortcomings—most notably being C-centric and failing to address
C++ needs well.

CUDA* and OpenCL have served their purposes well. Going forward, developers need a truly
open and multivendor approach to help deliver on the promises of XPUs.

Why SYCL* and Data Parallel C++ (DPC++) Offer the Best Path
Forward
The learnings from both CUDA* and OpenCL set the stage for the emergence of a truly popular
and open solution for data parallelism based on C++ for heterogeneous systems. That solution
is SYCL*, which is a higher-level programming model to improve programming productivity on
multiple hardware accelerators. It has quickly gained broad multivendor support, widespread
interest, and the support of multiple serious compiler projects.

SYCL* is important because effective programming in our increasingly heterogeneous world
requires that we offer performant access for all XPUs. Only a truly open approach can provide
that.

SYCL* is an open standard for single-source C++ data-parallel programming of heterogeneous
hardware, or XPUs. SYCL* allows single-source compilation in C++ to target multiple devices
on a system, rather than using C++ for the host and domain-specific kernel language(s) for the
device(s).

SYCL* brings to C++ both kernel-style programming and a mechanism to locate, query, and
use accelerators in a system. Kernel-based programming is an important programming style
for harnessing data parallelism, which was also supported in OpenCL and CUDA*. An ability to
enumerate and access accelerators in a standard way was previously introduced by OpenCL.

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

7The Parallel Universe

Also take a look at DPC++, which provides an open implementation to the LLVM community,
with ambitions to upstream everything into LLVM C++ compilers. DPC++ aims to implement
SYCL* with some extensions. DPC++ pioneered many features that are now in SYCL* 2020, and
therefore had a head start in implementing much of SYCL* 2020, even before the ink was dry on
the standard. Work remains to complete alignment with the entire SYCL* 2020 specification; all
the work is easy to observe in the very active open source repository. DPC++ is used by Intel to
target Intel® CPUs, GPUs, and FPGAs. DPC++ is also used by Codeplay* to target NVIDIA* GPUs.
Another SYCL* compiler, hipSYCL, supports AMD* CPUs and GPUs by connecting with AMD’s*
HIP/ROCm*. Having multiple open source compilers for SYCL* is fantastic for the community, and
it demonstrates that SYCL* has broad, diverse, and open support.

Over the course of 2019 and 2020, I worked with a dedicated small team to create the first book
about SYCL* and DPC++. You can download a free copy from the Apress website. Shortly after its
publication, the Khronos Group* announced the finalized specification for SYCL* 2020.

The recent ratification of the SYCL* 2020 specification is a significant milestone. It is truly an
open specification with a bright future ahead, and it is the product of years of specification
development by many dedicated individuals from around the industry. Based on C++17, SYCL*
2020 enables easier acceleration of standard C++ applications and drives a closer alignment with
the ISO C++ roadmap. The Khronos* Group highlighted, in their SYCL* 2020 announcement, a
number of SYCL* 2020 features, including support for Unified Shared Memory (USM), built-in
reductions, extensive use of class template argument deduction (CTAD), and atomic operations
that align with standard C++ atomics.

XPUs Are the Future: Let’s Keep It Open for the Benefits of XPU
Diversity and Programming Sanity
SYCL* and DPC++ will help us make effective use of XPUs. They are part of a broader push for
support of XPUs that extends into libraries and all software development tools, building on the
ambitions of SYCL* and its compilers. That is the origin of the oneAPI industry initiative, which
I’m really passionate about and was excited to be a part of as I rejoined Intel. The support for this
whole topic—of easing the challenges of using all XPUs openly—is driving interest in SYCL* and
oneAPI. A solid example is the use of the Intel® oneAPI Deep Neural Network Library (oneDNN),
initially highly optimized for Intel processors, which accelerates the world’s fastest computer
(with ARM* processors). As a result, oneDNN has strong ARM* support now, too. The openness
of SYCL* and oneAPI libraries and tools are helping usher in a new era for openness and
performance to give us useful programming access to all XPUs.

Together, the software developer community has an opportunity to create standards, including
SYCL*, that serve the whole industry, and strongly support the adoption of heterogeneous
programming (XPUs) and modern C++ as it embraces parallelism.

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

8The Parallel Universe

SYCL* offers an open standard with broad support, lots of ability to participate, multiple open
source implementations, and seemingly infinite possibilities. DPC++ provides an open LLVM-
based compiler to reduce the effort to support SYCL* and encourage strong compatibility across
XPUs. oneAPI offers a forum to discuss and drive open and performant access for XPUs into all
aspects of software development.

I hope you’ll take the opportunity to get educated about SYCL*, DPC++, and oneAPI because
XPUs are the future of compute. We should shape support for XPUs together, in the open, and
enjoy the benefits of the enormous diversity in XPUs available for us to program effectively.

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

9The Parallel Universe

In the previous article, Reduction Operations in Data Parallel C++, we explored a number of
kernels to reduce an array of 10 million elements into a single value using the summation
operator. In this article, we will introduce one more reduction technique, called multi-block
interleaved reduction. We compare all of these reduction operations using Intel® VTune™
Profiler on both 9th generation and 12th generation Intel® GPUs and explain the reasons for
performance differences among these kernels.

Ramesh Peri, Senior Principal Engineer, Intel Corporation

More on Tuning the Common Reduction
Parallel Pattern

Analyzing the Performance
of Reduction Operations in
Data Parallel C++

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

10The Parallel Universe

Multi-Block Interleaved Reduction
Data Parallel C++ (DPC++) defines short vectors as basic data types with operations like load/
store and arithmetic operators defined. These short vector data types can be used to add another
level of blocking to get the compiler to generate very long vector operations for architectures
that can support them. We use the vec<int, 8> data type, which is a vector of eight integers, to
implement the reduction operation shown pictorially in Figure 1. The access pattern shown in the
illustration has a vector size of two and a sub-group size of four, with each work-item processing
four elements of the input vector.

The following code implements the reduction operation with the memory access pattern
described above, using a vector size of eight and a sub-group size of 16, with each work-item
processing 256 elements of the input vector:

void multiBlockInterleavedReduction(sycl::queue &q,
 sycl::buffer<int> inbuf,
 int &res) {
 const size_t data_size = inbuf.get_size()/sizeof(int);
 int work_group_size =
 q.get_device().get_info<sycl::info::device::max_work_group_size>();
 int elements_per_work_item = 256;
 int num_work_items = data_size / elements_per_work_item;
 int num_work_groups = num_work_items / work_group_size;
 sycl::buffer<int> sum_buf(&res, 1);

 q.submit([&](auto &h) {
 const sycl::accessor buf_acc(inbuf, h);
 sycl::accessor sum_acc(sum_buf, h, sycl::write_only, sycl::noinit);
 sycl::accessor<sycl::vec<int, 8>, 1, sycl::access::mode::read_write,
 sycl::access::target::local>
 scratch(work_group_size, h);
 h.parallel_for(sycl::nd_range<1>{num_work_items, work_group_size},
 [=](sycl::nd_item<1> item)
 [[intel::reqd_sub_group_size(16)]] {
 size_t glob_id = item.get_global_id(0);

Figure 1. Load a vector of elements, do vector reduction operations
on them, and then reduce the final resulting vector.

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

11The Parallel Universe

 size_t group_id = item.get_group(0);
 size_t loc_id = item.get_local_id(0);
 sycl::ONEAPI::sub_group sg = item.get_sub_group();
 size_t sg_size = sg.get_local_range()[0];
 size_t sg_id = sg.get_group_id()[0];
 sycl::vec<int, 8> sum{0, 0, 0, 0, 0, 0, 0, 0};
 using global_ptr =
 sycl::multi_ptr<int,sycl::access::address_space::global_space>;
 int base = (group_id * work_group_size + sg_id * sg_size)
 * elements_per_work_item;
 for (size_t i = 0; i < elements_per_work_item / 8; i++)
 sum += sg.load<8>(global_ptr(&buf_acc[base + i * 8 * sg_size]));
 scratch[loc_id] = sum;
 for (int i = work_group_size / 2; i > 0; i >>= 1) {
 item.barrier(sycl::access::fence_space::local_space);
 if (loc_id < i)
 scratch[loc_id] += scratch[loc_id + i];
 }
 if (loc_id == 0) {
 int sum=0;
 for (int i = 0; i < 8; i++)
 sum += scratch[0][i];
 auto v = sycl::ONEAPI::atomic_ref<int,
 sycl::ONEAPI::memory_order::relaxed,
 sycl::ONEAPI::memory_scope::device,
 sycl::access::address_space::global_space>(
 sum_acc[0]);
 v.fetch_add(sum);
 }
 });
 });
}

This kernel can be encoded in a different manner by utilizing the vector load operations instead
of explicitly computing the addresses. There is also a small change in dealing with the vector
loaded by each work-item to reduce it first locally. (The access pattern for this implementation is
shown in Figure 2.)

Figure 2. Load a vector of elements, reduce the vector to a single result, and then do the reduction.

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

12The Parallel Universe

void multiBlockInterleavedReductionVector(sycl::queue &q,
 sycl::buffer<int> inbuf,
 int &res) {
 const size_t data_size = inbuf.get_size()/sizeof(int);
 int work_group_size =
 q.get_device().get_info<sycl::info::device::max_work_group_size>();
 int elements_per_work_item = 256;
 int num_work_items = data_size / 4;
 int num_work_groups = num_work_items / work_group_size;
 sycl::buffer<int> sum_buf(&res, 1);

 q.submit([&](auto &h) {
 const sycl::accessor buf_acc(inbuf, h);
 sycl::accessor sum_acc(sum_buf, h, sycl::write_only, sycl::noinit);
 sycl::accessor<int, 1, sycl::access::mode::read_write,
 sycl::access::target::local>
 scratch(1, h);
 h.parallel_for(sycl::nd_range<1>{num_work_items, work_group_size},
 [=](sycl::nd_item<1> item)
 [[intel::reqd_sub_group_size(16)]] {
 size_t glob_id = item.get_global_id(0);
 size_t group_id = item.get_group(0);
 size_t loc_id = item.get_local_id(0);
 if (loc_id==0)
 scratch[0]=0;
 sycl::vec<int, 4> val;
 val.load(glob_id,buf_acc);
 int sum=val[0]+val[1]+val[2]+val[3];
 item.barrier(sycl::access::fence_space::local_space);
 auto vl = sycl::ONEAPI::atomic_ref<int,
 sycl::ONEAPI::memory_order::relaxed,
 sycl::ONEAPI::memory_scope::work_group,
 sycl::access::address_space::local_space>(
 scratch[0]);
 vl.fetch_add(sum);
 item.barrier(sycl::access::fence_space::local_space);
 if (loc_id==0) {
 auto v = sycl::ONEAPI::atomic_ref<int,
 sycl::ONEAPI::memory_order::relaxed,
 sycl::ONEAPI::memory_scope::device,
 sycl::access::address_space::global_space>(
 sum_acc[0]);
 v.fetch_add(scratch[0]);
 }
 });
 });
}

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

13The Parallel Universe

Performance Analysis of the Reduction Kernels
To evaluate the performance of these kernels, we ran them on two different Intel GPUs:

1.	Intel® HD Graphics 630 (9th generation integrated graphics). This GPU has 24 execution units (EUs) with
seven threads each.

2.	Intel® Iris® Xe graphics (12th generation integrated graphics). This GPU has 96 EUs with seven threads
each.

We used VTune Profiler to analyze the performance of the kernels. Also, larger reductions (i.e.,
512 million elements instead of 10 million) were performed so that the kernels run long enough
to collect good profiling data. The performance of each kernel is shown in Table 1. These kernels
were each run 16 times, and the average performance was recorded. The Intel® oneAPI Base
Toolkit (v2021.2.0) was used to collect the data in this article.

Kernel Intel HD Graphics 630 Intel Iris Xe Graphics
reductionAtomics1 146 49
reductionAtomics2 258 141
reductionAtomics3 111 38
Tree reduction 288 115
Built-in reduction operator 429 162
multiblockinterleavedreduction 83 37
multiblockinterleavedreductionVector 67 34

reductionAtomics1
This kernel is limited by the number of atomic updates that can be performed by the hardware
(Figure 3).

Here, the Global Work Size column gives the total work items in this kernel, which is the size of
the problem (i.e., 512 million elements). The Instance column is the number of times the kernel is
called, 17 in this case. The SIMD Width column is 32, the vector size that the compiler chose for
this kernel. The Computing Threads Started column shows the actual number of independent
threads that this kernel executed. It is equal to the Global Work Size divided by the SIMD Width
and then multiplied by the Instance count. Lastly, the GPU Atomics column gives the total number
of atomic operations executed by this kernel. For the reductionAtomics1 kernel, it is twice the

Table 1. Performance of different reduction implementations (time in milliseconds).

Figure 3. Statistics for reductionAtomics1 on Intel Iris Xe graphics.

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

14The Parallel Universe

number of threads because each thread issues two atomic operations (a SIMD32 in Gen12 is
encoded as two SIMD16 instructions).

VTune Profiler’s annotated architecture diagram shows that the 9th generation Intel GPU has
significant headroom in terms of memory bandwidth (reductionAtomics1 only achieves 15.3GB/s
of the 32GB/s peak) (Figure 4). The same kernel on the 12th generation GPU achieves much
higher memory bandwidth because Intel Iris Xe graphics can handle more atomic memory
updates than the 9th generation Intel HD Graphics (Figure 5).

Figure 4. Architecture diagram of reductionAtomics1 on Intel HD Graphics 630.

Figure 5. Architecture diagram of reductionAtomics1 on Intel Iris Xe graphics.

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

15The Parallel Universe

reductionAtomics2
This kernel performs quite poorly on both the 9th generation and 12th generation GPUs. The
memory access pattern in this kernel results in the compiler generating a vector load instruction
that only accesses one element of 16 different cache lines at a time. This results in the first access
incurring 16 cache misses with long latency, while all other 15 references will hit in the cache. This
is a good cache hit rate and bandwidth from L3, but overall performance is limited by the latency
of the first memory reference, which incurs 16 cache misses. It can be seen that the cache miss
rate is very low and the L3 memory bandwidth is high when compared to reductionAtomics1, but
its overall performance is quite poor on both the platforms (Figure 6).

reductionAtomics3
The memory access pattern in this kernel is such that the vector load instruction loads all the
elements of one cache line at a time. This results in 100% cache misses. Even though the cache
miss rate is 100%, the latency is better tolerated because multiple threads can be in flight at
the same time. This can be seen from the fact that this kernel performs significantly better than
reductionAtomics1 and reductionAtomics2 (Table 1), even though they have significantly lower
cache miss rates (15.5% on reductionAtomics2 and 69.8% on reductionAtomics1) and lower L3
memory bandwidth (Figure 7).

Figure 6. Architecture diagram of reductionAtomics2 on Intel HD Graphics 630.

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

16The Parallel Universe

Figure 7. Architecture diagram of reductionAtomic3 on Intel HD Graphics 630.

Figure 8. Architecture diagram of reductionAtomic3 on Intel Iris Xe graphics.

The annotated architecture diagram for reductionAtomics3 on the 12th generation GPU shows
that the memory bandwidth from main memory is almost the same as the L3 bandwidth
(56.5GB/s L3 BW to 58.5GB/s memory bandwidth) (Figure 8).

Tree Reduction
Tree reduction is a popular technique, but it does not perform very well on either the 9th
generation or 12th generation GPU. The inherent imbalance in the algorithm—where half of the
EUs are idle in each level of the reduction tree—hurts efficiency (Figure 9).

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

17The Parallel Universe

Figure 9. Architecture diagram of Tree Reduction on Intel Iris Xe graphics.

Figure 10. Platform view of the built-in reduction operator on Intel HD Graphics 630.

Compiler Built-In Reduction
The compiler built-in reduction operator is still under development and needs additional tuning
to reach the performance of other techniques presented here. Looking at the metrics reported
by VTune Profiler about the number of atomics and the number of computing threads started,
and comparing them to the Tree Reduction, we can conclude that a form of tree reduction on
shared local memory (SLM) is used to implement the built-in operator. It also seems that this
implementation first copies data from main memory into the shared local memory before
applying the reduction operator. This can be seen from the activity in the GPU Shared Local
Memory lane in the VTune Profiler platform view (Figure 10).

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

18The Parallel Universe

Figure 11. Architecture diagram of the compiler built-in reduction operator on Intel Iris Xe graphics.

Comparing the architecture diagrams of Tree Reduction and the compiler built-in reduction
operator, it can be seen that the usage of SLM for the latter is much higher (116GB/s vs. 62.6GB/s
for read and 59.7GB/s vs. 19.5GB/s) (Figures 9 and 11). This is due to the copying of data by each
thread before it is used in the reduction operation. In the Tree Reduction implementation, there is
no copying of data to SLM; SLM is only used for the intermediate values that need to be produced
by each work-group. Hence, our implementation of Tree Reduction performs better than the
built-in operator even though they are using the same algorithm.

It must be remembered that the performance of these reduction algorithms can vary quite a
bit among architectures. The performance of the built-in reduction operator will be improved in
future oneAPI compilers.

MultiBlockInterleaved
The memory access pattern in this kernel is carefully crafted so that the compiler can generate a
block load operation to load 128 elements per thread, which can achieve much higher bandwidth
than the other kernels (Figure 12).

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

19The Parallel Universe

Figure 12. Architecture diagram of multiblockinterleavedvector on Intel Iris Xe graphics.

Figure 13. Assembly code generated by the compiler for the sg.load operation in the kernel.

Figure 14. Architecture diagram of the MultiBlockInterleavedVector on Intel HD Graphics 630.

The subgroup load operations in this kernel are converted by the compiler into the following four
SIMD16 load instructions, where each of them populates four registers (Figure 13).

MultiBlockInterleaved
In this final kernel, we use the DPC++ built-in vectors, which result in SIMD32 instructions, as well
as block reads that give even better performance than the previous MultiBlockInterleaved kernel.
The MultiBlockInterleavedVector kernel achieves peak memory bandwidth for both platforms:
32.5GB/s on the 9th generation GPU (Figure 14) and 62GB/s on the 12th generation GPU
(Figure 15).

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

20The Parallel Universe

Figure 15. Architecture diagram of the MultiBlockInterleavedVector on Intel Iris Xe graphics.

Figure 16. Assembly code generated by the compiler, SIMD32 vector load instruction to load 128
elements on Intel Iris Xe graphics.

The assembly code generated by the compiler will load 128 elements per thread. As we see
below, a SIMD32 load instruction loads 128 elements into 16 registers (Figure 16). In this case, we
achieve peak bandwidth to fetch data from memory into the GPU for this platform.

Concluding Remarks
Reduction is an important operation in parallel programming and is used in many applications.
In this two-part article, we showed various ways in which reduction operations can be coded in
DPC++ and evaluated their performance on two integrated Intel GPUs. All the source code for the
kernels used in this article are available at https://github.com/rvperi/DPCPP-Reduction.

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

21The Parallel Universe

The OpenMP* standard has supported accelerator offload since version 4.0. These directives
enable users to offload data and computation to devices like GPUs. This makes it easier to write
portable, heterogeneous parallel code. In this article, we discuss some of the OpenMP* offload
directives and show their usage with code samples. We also show some OpenACC* to OpenMP*
porting examples.

Porting OpenACC* to OpenMP*
OpenACC* is the directive-based programming method for NVIDIA* GPUs, but lack of support
from other vendors limits it to one platform. OpenMP* offload, on the other hand, has broader

Nitya Hariharan, Application Engineer, and Rama Kishan Malladi, Performance Modeling
Engineer, Intel Corporation

Portability Across Heterogenous Architectures

OpenMP* Accelerator
Offload

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

22The Parallel Universe

Figures 1a and 1b show a code snippet ported from OpenACC* to OpenMP*. This is a kernel
from a radio astronomy package tConvolveACC. The OpenACC* directive, #pragma acc
parallel loop, is replaced with the OpenMP* offload directive, #pragma omp target
parallel for, plus explicit data transfer directives to and from the target device. The OpenACC*
implementation possibly did an implicit copy or used unified shared memory allocation to
manage the data transfer.

degridKernelACC(...)
{
 ...
 #pragma acc parallel loop
 for (dind = 0; dind < d_size; ++dind) {
 ...
 }
}
...
gridKernelACC(...)
{
 ...
 #pragma acc parallel loop
 ...
 #pragma acc atomic update
 gptr_re[0] = gptr_re[0] + cval.real();
 ...
}

Table 1. Common OpenACC* pragmas and their OpenMP* equivalents

industry support: the oneAPI framework, the NVIDIA* HPC SDK, the AMD ROCm* stack, and the
IBM* XL compiler suite. There is nearly a 1:1 mapping of OpenACC* directives to OpenMP* (Table
1), so porting legacy OpenACC* code to OpenMP* is usually easy and straightforward. Table 1
shows some commonly used OpenACC* pragmas and their OpenMP* equivalents.

OpenACC* Pragma OpenMP* Pragma Intent
#pragma acc parallel #pragma omp target teams Create a team of threads on the GPU, with

the master thread in each team executing the
region

#pragma acc parallel loop gang
worker vector collapse(2)

#pragma omp target teams
distribute parallel for simd
collapse(2)

Parallel computation, distribute work across
GPU hardware threads

#pragma acc kernels loop
reduction(+:norm)

#pragma omp parallel for
reduction(+:norm)

Parallel reduction computation

#pragma acc data copy(A[0:Sz]) #pragma omp target data
map(tofrom: A[0:Sz])

Copy data to/from the target device

#pragma acc update host(A[0:Sz]) #pragma omp target update
from(A[0:Sz])

Update data on the host from the device

#pragma acc data copyin(A[0:Sz]) #pragma omp target data
map(alloc:A[0:Sz])

Allocate memory on the device

#pragma acc update device(X) #pragma omp target update
to(X[0:Sz])

Update data on the device from the host

#pragma acc loop vector #pragma omp simd Vectorization
#pragma acc atomic update #pragma omp atomic update Atomically update a memory location

Figure 1a. The sample kernel from tConvolveACC implemented in OpenACC*.

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

23The Parallel Universe

Figure 1b. The sample kernel from tConvolveACC implemented in OpenMP*.

degridKernelOmpOffload(...)
{
 ...
 #pragma omp target parallel for \
 map(tofrom:d_data[0:d_size]) \
 map(to:d_grid[:grid.size()]) \
 map(to:d_C[:C.size()]) ...
 for (dind = 0; dind < d_size; ++dind) {
 ...
 }
}
...
gridKernelOmpOffload(...)
{
 ...
 #pragma omp target teams distribute parallel for \
 map(tofrom:d_grid[:grid.size()]) ...
 ...
 #pragma omp atomic update
 gptr_re[0] = gptr_re[0] + cval.real();
 ...
}

OpenMP* Offload on Intel® Platforms
We now look at the steps required to build and execute the offload code. We tested our OpenMP*
offload code with the 2021.2.0 version of the Intel® oneAPI Base Toolkit, using the following
compiler flags:

-fiopenmp -fopenmp-targets=spir64="-mllvm \
-vpo-paropt-enable-64bit-opencl-atomics=true \
-fp-model=precise"

The fiopenmp fopenmp targets=spir64 flags are two new options that tell the compiler to
generate a fat binary for the GPU. The -vpo-paropt-enable-64bit-opencl-atomics=true
compiler option enables atomic and reduction operations. See the online documentation for more details.

The user needs to set the OMP_TARGET_OFFLOAD environment variable to run OpenMP* offload
code on the GPU. (A runtime error will result if the GPU is unavailable.) The user can also choose
between the Level Zero or OpenCL™ backends:

export OMP_TARGET_OFFLOAD = MANDATORY
export LIBOMPTARGET_PLUGIN = {LEVEL0|OPENCL}

The LIBOMPTARGET_DEBUG environment variable can be set to one or higher to obtain GPU
offload debugging information. In Figure 2a, we highlight the debug information from the
tConvolveACC OpenMP* offload kernel when run with the Level Zero plugin. The two offload
regions are in functions gridKernelACC and degridKernelACC, which belong to a class named
Benchmark. Figure 2b shows the variable being transferred to the target device by the map
clause. Figure 2c shows the data being transferred from the host to the target device. Once all

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

24The Parallel Universe

the data required for the computation is present on the device, the kernel is executed, as shown
at the bottom of Figure 2a.

Target LEVEL0 RTL --> 0:
__omp_offloading_35_198bc1a__ZN9Benchmark13gridKernelACCERKSt6vector
Target LEVEL0 RTL --> 1:
__omp_offloading_35_198bc1a__ZN9Benchmark15degridKernelACCERKSt6vector

...

Libomptarget --> Launching target execution
__omp_offloading_35_198bc1a__ZN9Benchmark13gridKernelACCERKSt6vector with pointer 0x0000000000b72070
(index=0)

Libomptarget --> Entry 0: Base=0x00007f468ce16010, Begin=0x00007f468ce16010, Size=15310080, Type=0x21,
Name=d_iw[:this->wPlane.size()]

Libomptarget --> Creating new map entry with HstPtrBegin=0x00007f468ce16010,
TgtPtrBegin=0xffffd556aaa00000, Size=15310080, Name=d_iw[:this->wPlane.size()]

Libomptarget --> Moving 15310080 bytes (hst:0x00007f468ce16010) -> (tgt:0xffffd556aaa00000)
Target LEVEL0 RTL --> Copied 15310080 bytes (hst:0x00007f468ce16010) -> (tgt:0xffffd556aaa00000)

Figure 2a. Class and function information for the tConvolveACC OpenMP* offload kernel,
highlighted in red.

Figure 2c. Data transfer information for the tConvolveACC OpenMP* offload kernel, highlighted
in green.

Figure 2b. Variable information for the tConvolveACC OpenMP* offload kernel, highlighted in blue.

Mapping OpenMP* Threads to the Target Device
At run time, the OpenMP* thread hierarchy is mapped to the target device. The #pragma omp
teams construct creates a league of teams, and the initial thread in each team executes the
region. The #pragma omp distribute clause distributes the work across the initial threads in
the teams, with each team scheduled on a subslice (on Intel® GPUs). Further parallelization of
work within each team is done with the parallel for clause, with the threads in a team mapped
onto the execution unit (EU) threads. Finally, the #pragma omp simd clause uses the EU vector
lanes to run vectorized code. Threads within a team synchronize at the end of a work sharing
construct. This is illustrated for Intel® processor graphics (9th generation), which has one slice,
three subslices, eight EUs/subslice, seven threads/EU, and SIMD vector processing units in each
EU (Figure 3). Mapping of OpenMP* offload pragmas to these respective units on 9th generation
Intel processor graphics is also shown.

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

25The Parallel Universe

Figure 3. Mapping OpenMP* offload to hardware features on 9th generation Intel
processor graphics (adapted from OpenMP* Offloading Verification and Validation:

Workflow and Road to 5.0).

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

26The Parallel Universe

OpenMP* Directives for Better Data Transfer to/from the Target
Device
Having built an application and successfully offloaded some of the kernels to the target, the
next step would be to explore optimization opportunities, such as data transfer. OpenMP* has
directives to implement efficient data transfer between host and target. Shown below is an
example, tHogbomCleanACC, which has two offload targets in the HogbomClean function. A naïve
OpenMP* offload would result in data transfer during both target invocations. The problem gets
worse if this is repeated in a loop for g_niters, as shown in the code snippet (Figure 4a).

HogbomClean(...)
{
...for (unsigned int i = 0; i < g_niters; ++i)
 {
 findPeakOffload(resdata, absPeakVal, absPeakPos, ressize);...
 subtractPSFOffload(psfdata, psfWidth, psfsize, resdata, ...);...
 }...
}

subtractPSFOffload(...)
{
...#pragma omp target teams distribute parallel for map(to: resdata...
}

findPeakOffload(...)
{
...#pragma omp target teams distribute parallel for map(to: resdata...
}

Shown in Figure 4b is an optimized implementation of HogbomClean function that does more
efficient data transfer. The #pragma omp target data map statement defines the scope for the
data to be persistent on the target. Any kernel offload within this scope can reuse the data (with
the handle). Subsequent map calls to the offloaded kernel will not require data transfers (except
for the ones that are explicitly marked for transfer).

Figure 4a. Naïve implementation of two OpenMP* offload kernels resulting in
unnecessary data transfers.

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

27The Parallel Universe

HogbomClean(...)
{
 ...
 #pragma omp target data map(tofrom: resdata...
 {
 for (unsigned int i = 0; i < g_niters; ++i)
 {
 findPeakOffload(resdata, absPeakVal, absPeakPos, ressize);...
 subtractPSFOffload(psfdata, psfWidth, psfsize, resdata, ...);...
 }...
 }...
}

subtractPSFOffload(...)
{
...#pragma omp target teams distribute parallel for map(to: resdata...
}

findPeakOffload(...)
{
...#pragma omp target teams distribute parallel for map(to: resdata...
}

Enhanced Support for Variant Function Dispatch
The OpenMP* offload specification supports function variants that can be conditionally invoked
instead of the base function. The implementation of this Intel-specific OpenMP* offload function
variant API is supported using #pragma omp target variant dispatch. This directive tells
the compiler to emit a conditional dispatch code around the function call. If the target device is
available, the function variant is invoked instead of the base function. Figures 5a, 5b, and 5c show
an example of the target variant dispatch API. Note that the function variant must have the
same arguments as the base function, plus an additional last argument of type void *.

findPeakOffload(..., void *p)
{
 ...
 #pragma omp target teams distribute parallel for
 reduction(max:threadAbsMaxVal) map(to:data[0:size])
 for (size_t i = 0; i < size; ++i) {
 if (abs(data[i]) > threadAbsMaxVal)
 threadAbsMaxVal = abs(data[i]);
 }

 #pragma omp target teams distribute parallel for
 map(to:data[0:size]) map(from:tmpPos)
 for (size_t i = 0; i < size; ++i) {
 if (abs(data[i]) == threadAbsMaxVal)
 tmpPos = i;
 }
 maxVal = data[tmpPos];
 maxPos = tmpPos;
}

Figure 4b. OpenMP* orphaning example with more efficient copy once and reuse data transfer.

Figure 5a. The function variant, findPeakOffload, executes on the target device.

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

28The Parallel Universe

Enhanced Support for Variant Function Dispatch
The OpenMP* offload specification supports function variants that can be conditionally invoked
instead of the base function. The implementation of this Intel-specific OpenMP* offload function
variant API is supported using #pragma omp target variant dispatch. This directive tells
the compiler to emit a conditional dispatch code around the function call. If the target device is
available, the function variant is invoked instead of the base function. Figures 5a, 5b, and 5c show
an example of the target variant dispatch API. Note that the function variant must have the
same arguments as the base function, plus an additional last argument of type void

HogbomClean(...)
{
 ...
 #pragma omp target data map(to: psfdata[0:psfsize])
 map(tofrom: resdata[0:ressize])
 {
 for (unsigned int i = 0; i < g_niters; ++i)
 {
 #pragma omp target
 findPeakBase(resdata, absPeakVal, absPeakPos, ressize);
 ...
 }
 }
}

Closing Remarks
The platform- and vendor-agnostic device offload support provided by the OpenMP* standard
makes it easier for users to target multiple heterogeneous architectures using the same code
base. Therefore, we expect increasing adoption of OpenMP* heterogeneous parallelism among
users and hardware and software vendors.

Figure 5c. Invocation would just need to be of the host version. The offload target function
would be executed if target device is present; otherwise, the host version is executed.

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

29The Parallel Universe

Deep learning (DL) workloads have been growing at a rapid pace. DL-based algorithms process
massive amounts of data to find patterns for image classification, object detection, time-series
prediction, and much more. With the increase in data availability, the complexity of DL models
also increased. Models like ResNet and VGG have millions of parameters and perform on the
order of billions of floating-point operations. Recent models, like GPT-3 and BERT, have multi-
billion to a trillion parameters. Therefore, training DL models is a computationally expensive
and time-consuming process. To reduce the time to solution, apart from optimizing single- and
multi-core performance, one might also consider scaling out to multiple nodes (i.e., distributed
training). This can be achieved by splitting the model (model parallelism), splitting the data (data
parallelism), or a combination of both schemes (hybrid parallelism).

Abhay Rawat and Dr. Amarpal S Kapoor, Technical Consulting Engineers, Intel Corporation

Incremental Tuning Can Yield Significant
Performance Improvements

Optimizing Distributed
AI Training Using Intel®
oneAPI Toolkits

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

30The Parallel Universe

This article focuses on tuning and scaling a DL-based algorithm on a cluster of compute nodes.
We’ll illustrate using a semi-supervised generative adversarial network (S-GAN) to classify images.
We demonstrate various tuning options in OpenMP*, TensorFlow*, and the Intel® MPI Library.
On a single node, our optimizations achieve a 2x speedup. Scaling across an eight-node cluster
achieves an overall speedup of 16x. Image throughput (images/second) for the Intel MPI Library
was consistently better than the Open MPI* library by up to 27% on a single node and up to
18% on an eight-node cluster. Many of these performance gains were achieved without code
modifications, indicating that these optimizations can be effectively applied to other applications.

Semi-Supervised Generative Adversarial Networks (S-GANs)
Supervised learning requires large amounts of labeled data. Labeling and annotation must be
done manually by human experts, so it is laborious and expensive. Semi-supervised learning
is a technique where both labeled and unlabeled data are used to train the model. Usually,
the number of labeled data points is significantly less than the unlabeled data points. Semi-
supervised learning exploits patterns and trends in data for classification.

S-GANs tackle the requirement for vast amounts of training data by generating data points
using generative models. The generative adversarial network (GAN) is an architecture that uses
large, unlabeled datasets to train an image generator model via an image discriminator model.
GANs comprise two models: generative and discriminative. They are trained together in a zero-
sum game. The generator’s job is to generate data similar to those present in the dataset. The
discriminator’s job is to identify the actual data among the generated data. S-GANs extend the
GAN architecture by adding a supervised discriminator (classifier) to the classification task (Figure
1). This results in a classifier that generalizes well across unseen data.

Figure 1. Architecture of S-GAN.

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

31The Parallel Universe

Software and Hardware
Three Intel oneAPI toolkits (v2021.1) were used for these experiments:

1.	Intel® oneAPI Base Toolkit

2.	Intel® oneAPI HPC Toolkit

3.	Intel® oneAPI AI Analytics Toolkit

Intel® Distribution for Python* (IDP, v3.6), which leverages Intel® oneAPI Math Kernel Library and
Intel® oneAPI Data Analytics Library, was used to accelerate core Python* numerical packages.
The S-GAN model was implemented using Intel® Optimization for TensorFlow* (v1.15). Horovod
(v0.20.2) was used for distributed training. Horovod relies on MPI for internode communication,
so the performance of two MPI libraries was compared: Intel MPI Library and Open MPI* (v4.0.5).
Intel® VTune™ Profiler was used to analyze performance. All tests were run on the Intel Endeavor
cluster using Intel® Xeon® Platinum 8260L processors, connected through the Intel® Omni-Path
Fabric running at 100 Gbps (Figure 2).

Tuning Methodology
It is good practice to measure baseline performance before optimizing an application. Profiling
tools help identify areas for potential optimization, such as threading, vectorization, I/O, multi-
node communications, etc. We used the Application Performance Snapshot (APS) in Intel
VTune Profiler. The APS profile showed that far too many threads were being spawned by the
application. Some threads came from OpenMP*, while others came from the Eigen library that
TensorFlow* invokes. The number of OpenMP* and Eigen threads exceeded the number of logical
cores per node, resulting in resource oversubscription, which usually hurts performance.

Selecting the Optimal Number of Threads
The first step, therefore, was to find the optimal number of threads. First, we tested different
numbers of OpenMP* threads by setting the OMP_NUM_THREADS environment variable on a single
compute node, using low-resolution images (256 x 256 pixels) and limiting the number of epochs
(two) to save time. We found that 50 threads gave the best performance, with 19.67 images/
second (Figure 3).

Figure 2. Node composition ($ cpuinfo -g).

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

32The Parallel Universe

Next, we used TensorFlow’s* threading API to control the number of threads. The value of inter_
op_parallelism_threads specifies the number of threads used by independent nonblocking
operations, while the value of intra_op_parallelism_threads specifies the number of
threads used for individual operations like matrix multiplication and reductions. Figure 4 shows
the performance at different values of these two parameters. Dark green blocks indicate good
performance, while dark red blocks indicate poor performance. White blocks indicate failed runs.

For a single MPI rank per node, the optimal values of inter_op_parallelism_threads and
intra_op_parallelism_threads were found to be 0 and 45, respectively, which corresponds
to 12.34 images/second. This was lower than the value of 19.67 images/second achieved using
OMP_NUM_THREADS (Figure 3), so we used this environment variable to control the number of
threads instead of using TensorFlow’s* threading API.

Selecting the Optimal Number of MPI Ranks per Node
The application uses MPI/OpenMP* hybrid parallelism, so it is important to find the best
combination of OpenMP* threads and MPI ranks per node. We repeated the test from Figure

Figure 3. Finding the optimal number of OpenMP* threads.

Figure 4. Finding the optimal values of inter/intra_op_parallelism_threads

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

33The Parallel Universe

3 (i.e., 1 ≤ OMP_NUM_THREADS ≤ 96), but varied the number of MPI ranks per node (21 ≤ ppn ≤
24, where ppn is the number of ranks per node) (Figure 5). The best performance (26.3 images/
second) was achieved with eight MPI ranks and nine OpenMP* threads on each node.

Overcoming Memory Leakage
Low-resolution images were used for the experiments described so far. For higher-resolution
images (1360 x 1360 pixels), the memory footprint of each worker process increased significantly,
so running eight MPI ranks per node causes out-of-memory errors. It turned out that the memory
footprint of a single rank was over 129 GB. With only about 200 GB of DRAM available on each
node, it was only possible to launch a single rank per node, which would have been suboptimal
for a dual-socket machine (because of NUMA issues). Running our application through the
Memory Profiler for Python* utility revealed a memory leak. Around 56 GB of memory was not
released during the forward pass of the model (Figure 6, top). This turned out to be a known
bug (TensorFlow* issue #33009 and Keras issue #13118) in the Keras Model.predict method
in TensorFlow*. Based on recommendations from the TensorFlow* community, Model.predict
was replaced with Model.predict_on_batch, which lowered the overall per-process memory
consumption (Figure 6, bottom). With the memory leak fixed, we were still limited to only two
ranks per node for high-resolution images. We didn’t optimize the memory consumption further,
although this might be possible.

Figure 5. Finding the best combination of OpenMP* threads and MPI ranks in a single node.

Figure 6. Memory leak detected by Memory Profiler

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

34The Parallel Universe

Setting Other OpenMP* and Intel MPI Library Environment Variables
The optimal settings of three other environment variables (KMP_BLOCKTIME, KMP_AFFINITY, and
I_MPI_PIN_DOMAIN) were also explored. Based on previous performance recommendations, we
ran the six experiments shown in Table 1. Note that the environmental variable settings in set #5
were also used in the other five sets. Set #3 gave the best training performance (Figure 7).

Set # Environment Variable Settings
1 KMP_BLOCKTIME=1

KMP_AFFINITY=granularity=fine,verbose,compact,1,0
I_MPI_PIN_DOMAIN=auto:compact

2 KMP_BLOCKTIME=0
KMP_AFFINITY=granularity=fine,verbose,compact,1,0
I_MPI_PIN_DOMAIN=auto:compact

3 KMP_BLOCKTIME=1
I_MPI_PIN_DOMAIN=auto:compact

4 KMP_BLOCKTIME=0
I_MPI_PIN_DOMAIN=auto:compact

5 (common) I_MPI_DEBUG=100
HOROVOD_FUSION_THRESHOLD=33554432

6 KMP_BLOCKTIME=200
I_MPI_PIN_DOMAIN=auto:compact

Table 1. Experimental settings for other OpenMP* and Intel MPI Library environment variables.

Figure 7. Performance comparison of the six experiments from Table 1

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

35The Parallel Universe

Choosing Between MPI Libraries
Next, we gathered the optimal settings from the previous tuning experiments and compared the
performance of Intel MPI Library against Open MPI* for the high-resolution images (1360 x 1360
pixels), with two MPI ranks per node and 33 OpenMP* threads for a total of 100 epochs. The
following Intel MPI Library command-line was used:
$ OMP_NUM_THREADS=33 KMP_BLOCKTIME=1 I_MPI_PIN_DOMAIN=auto:compact \
 mpirun -n 2/4/8/16 -ppn 2 -f $HOSTFILE \
 python SGAN_pob.py --image_size 1360 --num_epochs 100 --save_checkpoints False

Roughly equivalent runtime settings were used for Open MPI*:
$ OMP_NUM_THREADS=33 KMP_BLOCKTIME=1 \ mpirun -n 2/4/8/16 -hostfile $HOSTFILE
-bind-to socket -map-by ppr:1:socket \
 --mca btl ^openib --mca pml ob1 --report-bindings -x LD_LIBRARY_PATH \
 python SGAN_pob.py --image_size 1360 --num_epochs 100 --save_checkpoints False

Intel MPI Library outperformed Open MPI* both in single- and multi-node scenarios (Figure 8).

Although parallel scalability based on images/second appears linear, scaling based on time is
sublinear, indicating application inefficiency. Further analysis revealed that the frequency of
evaluations did not correctly scale according to the total number of nodes. As the number of
nodes increased, so did the frequency of evaluations. Also, these evaluations were done by the
MPI master rank, so all other ranks stalled until the master rank finished the evaluation. We fixed
this issue by performing the evaluation step every 15 training iterations, regardless of the number
of nodes (Figures 9 and 10). This modification did not affect model accuracy.

Figure 8. Performance comparison of Intel MPI Library and Open MPI*.

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

36The Parallel Universe

Conclusions
In this article, we presented an incremental optimization approach to achieve better S-GAN
training performance. Both runtime and source code-based optimizations were performed to
resolve memory issues, scaling issues, and single-node performance inefficiencies. Horovod was
used to implement distributed training of the S-GAN model on a multi-node cluster. Two MPI
libraries (Intel MPI Library and Open MPI*) were compared.

Figure 11 summarizes the performance gains from our optimization effort. The single-node
optimizations achieved a 2x speedup, while multi-node optimizations resulted in a further 8x
speedup, bringing overall time-to-solution down by a factor of 16, with no loss in model accuracy.

Figure 9. Fraction of total time spent on training
and evaluation before optimization (left) and

after optimization (right)

Figure 10. Multi-node performance with
linear time scaling

Figure 11. Final speedup obtained with Intel MPI Library

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

37The Parallel Universe

[This article originally appeared in HPCwire and is reprinted with permission.]

In this invited guest piece, Sparsh Mittal provides perspective on the role of the central processing
unit (CPU) for deep learning workloads in an increasingly diverse processor space, reviewing use
cases where the performance of the CPU excels, and noting some of the architectural changes
and directions spurred by deep learning applications. The article serves as an introduction to a
new survey research paper (written by Mittal et al.) published this April in IEEE Transactions on
Neural Networks and Learning Systems.

Sparsh Mittal, Assistant Professor, Indian Institute of Technology, Roorkee, India

The Role and Potential of
CPUs in Deep Learning

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

38The Parallel Universe

Deep learning (DL) applications have unique architectural characteristics and efficiency
requirements. Hence, the choice of computing system has a profound impact on how large
a piece of the DL pie a user can finally enjoy. Even though accelerators may provide higher
throughput than general-purpose computing systems (CPUs), there are several other metrics
and usage scenarios on which CPUs are preferred or are superior. A recent survey paper I’ve
coauthored with Poonam Rajput and Sreenivas Subramoney (A Survey of Deep Learning on
CPUs: Opportunities and Co-optimizations) highlights the strengths of CPUs in DL, and identifies
opportunities for further optimization.

A CPU Has Its Forte, and an Accelerator Is Not a Panacea
Sparse deep neural networks (DNNs) are inefficient on massively parallel processors because
of their irregular memory accesses and inability to leverage optimizations such as cache tiling
and vectorization. Further, recurrent neural networks (RNNs) are difficult to parallelize due to the
dependencies between the steps. Similarly, DNNs such as InceptionNet variants have filter shapes
of 1×1, 3×3, 1×3, 3×1, etc., which lead to irregular memory accesses and a variable amount of
parallelism across the layers. CPUs are more suitable for such applications with limited parallelism
because of their advanced memory management techniques. For example, researchers from Rice
University have shown that for fully connected networks over sparse datasets such as Amazon-
670K* and Delicious-200K*, the DL training problem can be modeled as a search problem. This
allows replacing matrix multiplication operations with hash tables. Their technique on CPUs
provides higher performance than a TensorFlow*-based implementation on GPUs.

3D convolutional neural networks (CNNs), and even 2D CNNs, with large batch-sizes require
a massive amount of memory. Since CPU-managed hosts in cloud and data center scenarios
have much larger memory capacities than accelerators, running memory-hungry operations on
CPUs is not only merely attractive but often imperative. Accelerators such as TPUs provide high
throughput for large batch sizes; however, for applications requiring real-time inference, the use
of large batch sizes is not preferred. At small batch sizes, CPUs generally provide competitive
latency. There are a host of techniques that can be applied to further tune the DL applications
on CPUs; for example, hardware-aware pruning, vectorization, cache tiling, and approximate
computing. Our survey paper summarizes many such techniques.

Across the Board: From Tiny Wearables to Large Data Centers
IoT devices and wearables have tight power and area budgets, which precludes over-
specialization. For example, a smartwatch chip cannot host separate accelerators for speech/
audio/image/video processing. In smartphones running Android*, the programming support
for mobile GPU or DSP is not fully mature. In fact, on a typical mobile SoC, the theoretical peak
performance of mobile CPUs equals that of mobile GPUs. Further, data centers supporting web

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

39The Parallel Universe

services such as social networks see a significant fluctuation in computing demand over time.
CPUs can meet this variability in demand due to their high availability and efficiency for both DL
and non-DL tasks. Finally, in extreme environments, such as defense and medical, which require
security certifications, CPUs are sometimes the only platform of choice.

Not Missing the Obvious: Economy and Ease of Use
Accelerators require long design cycles and massive investment. Integrating them into existing
ecosystems requires high costs and engineering work. By contrast, the hardware/software stack
of CPUs is already well established and understood. They can provide reasonable speedups
on a broad range of applications. While large-scale companies have the resources to build and
maintain their custom accelerators, CPUs (or GPUs) remain the most feasible platform for other
companies.

Future Outlook: Brighter Than You Think
Going forward, merely increasing peak performance will not be sufficient; more revolutionary
improvements are required to boost the performance of a broad range of DL applications, such
as reinforcement learning and generative adversarial networks. Recent CPUs have begun to
provide hardware support for low-precision computing. Once in-memory computing reaches
maturity, the large caches of CPUs would turn into massive compute units. Development of
open source ISA, such as RISC-V, would further break the portability and proprietary barriers of
accelerators.

The metrics of interest are numerous and varied, and so are the state-of-the-art DL models. We
believe that instead of a “general-purpose processor versus accelerator” debate, the future will
see a CPU-accelerator heterogeneous computing approach that brings together the best of both
worlds.

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

40The Parallel Universe

Neural architecture search (NAS) is a modern technique to find optimized neural networks
(NNs) for a given task, such as image classification, through structural iteration and permutation.
Network parameters—such as the depth of the network, the number of convolutional filters,
pooling, epochs, and learning rate—can substantially impact a network’s accuracy, inference
throughput, and latency for a given dataset.

The search space for these parameters is large, so NAS can take many compute-hours to train. In
this article, we show how you can use smarter search algorithms provided by SigOpt paired with
raw cluster computing power provided by Ray Tune to accelerate this process. We use a simple
example so that practitioners can apply this technique to their own workflows.

Ellick Chan, Head of Intel® AI Academy, University Relations and Research and Barrett
Williams, SigOpt Product Marketing Lead

Systematically Search Model Architectures
with SigOpt

MiniNAS Neural
Architecture Search Using
SigOpt and Ray Tune

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

41The Parallel Universe

To illustrate the core concept of NAS, consider the original network in Figure 1a. This reference
network consists of a single input layer followed by one or more copies of Block 1. Block 1 is
based on a convolution-pooling motif consisting of 3×3 convolutions with 32 filters, optionally
followed by a pooling operation. This pattern continues with one or more copies of Block 2,
similarly composed of 32 3×3 convolutional filters. These convolutional blocks are then flattened
to a vector, processed through a fully connected layer, and topped off with a softmax function for
final classification.

NAS helps the data scientist test a variety of permutations of a reference architecture. Figure 1b
shows one option, called “depth scaling,” in which Block 2 is repeated to increase the effective
depth of the network. For good measure, we also optionally add another fully connected layer of
1024 neurons. In this tutorial, the two fully connected layers are the same size, but they can be
different sizes in your application.

Figure 1c shows “width scaling,” in which the depth of the network remains constant, but
parameters on the operators are varied. In this case, we reduce the number of convolutions in
L1 (layer 1) from 32 to 16, and increase the number of convolutions in L2 from 32 to 64. We
also make the fully connected layer wider, going from 1024 to 2048. Note that NAS doesn’t have
to search for all the parameters at once. It’s possible to optimize one parameter at a time and
fix the others; or, if your optimizer is intelligent like SigOpt, it’s both possible and more efficient
to strategically update multiple parameters at once to find the best network architecture more
quickly.

Figure 1d explores one more dimension by challenging our assumption of using 3×3 filters.
Instead, we substitute the filters in Block 1 with 5×5 filters and Block 2 with 7×7 filters. This can
help the performance of certain models and datasets, depending on data characteristics and
input image resolution.

By now, it’s fairly clear that even with a simple example, there are a combinatorially large number
of NN parameters to customize and explore. In the rest of this article, we will show you how to
use SigOpt and Ray Tune to fine tune the space of simple NN used to classify images in the classic
CIFAR-10 dataset.

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

42The Parallel Universe

Figure 1. Network variations used in this tutorial

Overall Workflow
1.	 Define an NN training task: Choose a dataset and a model template (e.g., CIFAR-10 or a

convolutional neural network [CNN]) and define the parameters to tune (e.g., number of layers
and/or filters).

2.	 Apply Ray Tune to search for a preliminary set of model parameters.

3.	 Adapt the search algorithm to SigOpt to get better parameters more efficiently.

Parameterizing the Model
For the purposes of this article, we define an NN training task as a convolutional network with
one or more convolutional blocks. We’ll use the CIFAR-10 dataset and the Keras* API from
TensorFlow*.

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

43The Parallel Universe

Install prerequisites
!pip install -qqq ray[tune] pandas

Download dataset
from tensorflow.keras.datasets import cifar10
d = cifar10.load_data()

Ray Tune calls this function many times in parallel with different hyperparameters
def train(config):
 import os, numpy as np
 import psutil
 os.environ['OMP_NUM_THREADS'] = str(int(psutil.cpu_count()/2))
 from tensorflow import keras
 from tensorflow.keras.models import Sequential
 from tensorflow.keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D

 # Load the dataset
 (X_train, Y_train), (X_test, Y_test) = keras.datasets.cifar10.load_data()

 # Create the model
 model = Sequential()

 # Build first convolutional block motif
 model.add(Conv2D(config['nconv0'], kernel_size=(3, 3),

activation='relu', input_shape=(32, 32, 3)))
 for i in range(config['nblocks1']): # Repeat this block nblocks1 times

if len(model.layers) > config['layers']: break # Limit depth to "layers"
Add nconv1 3x3 conv kernels with relu activation
model.add(Conv2D(config['nconv1'], kernel_size=(3, 3), activation='relu'))

 # Add pooling
if config["pooling"] == "True": model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25)) # Add dropout

 for i in range(config['nblocks2']):
if len(model.layers) > config['layers']: break
model.add(Conv2D(config['nconv2'], kernel_size=(3, 3), activation='relu'))
if config["pooling"] == "True": model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

 model.add(Flatten()) # Flatten output tensor to a vector
 for i in range(config['nfcll']): # number of fully connected last layers

if len(model.layers) > config['layers']: break
model.add(Dense(1024, activation='relu'))

 model.add(Dropout(0.5))
 model.add(Dense(10, activation='softmax')) # Apply softmax classification
 print("Layers: %d max layers: %d" % (len(model.layers), config['layers']))

 # Compile and setup training
 from tensorflow.keras.utils import to_categorical
 model.compile(loss='categorical_crossentropy',

Adam uses an adaptive learning rate that we do not explicitly tune this
optimizer=keras.optimizers.Adam(lr=0.0001, decay=1e-6), metrics=['accuracy'])

 # Train the model
 model.fit(X_train / 255.0, to_categorical(Y_train),

batch_size=128, shuffle=True, verbose=0,
epochs=config["epochs"])

 # Evaluate the model
 scores = model.evaluate(X_test / 255.0, to_categorical(Y_test))
 tune.report(Accuracy=scores[1], Loss=scores[0])

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

44The Parallel Universe

To parameterize the model, we define the following:

	• Epochs: Number of epochs to train a model

	• Layers: Maximum number of layers of the desired model (subsequent layers are pruned)

	• Nconv0: Number of 3×3 convolution filters for the input layer

	• Nfcll: Number of fully connected last layers, with 1,024 neurons each

	• Pooling: Global setting to enable/disable pooling in convolution blocks 1 and 2

	• Nblocks1: Number of copies of convolution block 1

	• Nconv1: Number of 3×3 convolution filters for convolution blocks 1 and 2

	• Nblocks2: Number of copies of convolution block 2

	• Nconv2: Number of 3×3 convolution filters for block 2

To be consistent for deploying clusters in Part 2 (to be published later), we’ll start Ray from the
command line. If you’re running on a single node, the following commands aren’t necessary:

If you’re running on a cluster (such as Intel® DevCloud) that uses a job scheduler (e.g., a Portable
Batch System), the following commands start worker processes on multiple nodes:

Finally, set the parameters:

!ray stop
!sleep 3
!nohup ray start --head --num-cpus 1
!sleep 3
import ray
ray.init('localhost:6379')

!which qsub && echo ray start --address `hostname`:6379 --block --num-cpus 1 | qsub
!which qsub && echo ray start --address `hostname`:6379 --block --num-cpus 1 | qsub
!which qsub && echo ray start --address `hostname`:6379 --block --num-cpus 1 | qsub
!which qsub && sleep 20

from ray import tune
config = {
 "epochs": tune.randint(20, 30),
 "layers": tune.randint(1, 20), # maximum number of layers
 "nconv0": tune.randint(16, 64), # input layer
 "nfcll": tune.randint(0, 2), # fully connected last layer
 "nblocks1": tune.randint(1, 3), # conv block 1
 "nconv1": tune.randint(16, 64),
 "nblocks2": tune.randint(1, 3), # conv block 2
 "nconv2": tune.randint(16, 64),
 "pooling": tune.choice(['True', 'False'])
 }

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

45The Parallel Universe

Common options for Ray Tune
tune_opts = {
 # Number of sample points to try, increase for better results
 'num_samples': 5,
 # Some net configs are invalid (pooling too many times creates negative dim)
 'raise_on_failed_trial': False
}

import subprocess, psutil

Enable accelerator, if present
try:
 if subprocess.run('nvidia-smi').returncode == 0:
 tune_opts['resources_per_trial'] = {'cpu': 1, 'gpu': 1}
except FileNotFoundError: pass

analysis = tune.run(
 train_wrapper,
 config=config,
 verbose=1,
 **tune_opts)

To see the full optimization results, inspect the results dataframe
analysis.results_df

Visualize Ray Tune results
d = analysis.results_df
d.plot.scatter('timestamp', 'Accuracy')

Apply Ray Tune
Ray Tune is a Python* library that facilitates scaled experimentation, as well as hyperparameter
optimization via SigOpt, allowing multiple worker nodes to explore the search space in parallel.
A naïve grid search of our defined parameter space would explore nearly 1.2 billion possible
configurations1. In this article, we show how to use a random search to speed up this process, and
then follow up with a smarter guided search using SigOpt, effectively comparing the performance
and output of the two approaches.

For Ray Tune, the most important inputs are the function to optimize (train) and the search space
for the parameters (config). We defined both of these earlier and provide the corresponding
code below. Other options include a choice of search algorithm and scheduler for more guided
searches.

Integrating with SigOpt
To sign up for free access to SigOpt, please use this sign-up form. You’ll then be able to create
an account, which will give you access to an API key that you can use in your Google Colab*
notebook or Intel DevCloud Jupyter Notebook*.

1 This estimate is derived from 10*20*(64-16)*3*3*(64-16)*3*(64-16)*2.

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

46The Parallel Universe

Fill in your SigOpt key here
SIGOPT_TOKEN = "YOUR_SIGOPT_API_KEY_HERE"
SIGOPT_PROJECT = "raytune-simplenas"
!pip install -qqq sigopt

Convert Ray Tune parameter space to SigOpt format
def convert_space_to_sigopt(config):
 c = []
 for k, v in config.items():

print(k,v)
if isinstance(v, ray.tune.sample.Float):

c.append({'name': k, 'type': 'double',
'bounds': {'min': v.lower, 'max': v.upper}})

elif isinstance(v, ray.tune.sample.Integer):
c.append({'name': k, 'type': 'int',

'bounds': {'min': int(v.lower), 'max': int(v.upper)}})
elif isinstance(v, ray.tune.sample.Categorical):

vals = [{'enum_index': i+1, 'name': str(z),
'object': 'categorical_value'}
for i, z in enumerate(v.categories)]

c.append({'name': k, 'type': 'categorical', 'categorical_values': vals})
else:

print('Unknown type:', k, type(v))
raise ValueError

 print('config:', c)
 return c

import ray, os
from ray.tune.suggest.sigopt import SigOptSearch
from ray.tune.schedulers import FIFOScheduler
sigopt_connection = ray.tune.suggest.sigopt.Connection(client_token=SIGOPT_TOKEN)
algo = SigOptSearch(
 convert_space_to_sigopt(config),
 name=SIGOPT_PROJECT,
 connection=sigopt_connection,
 project=SIGOPT_PROJECT,
 max_concurrent=3,
 metric="Accuracy",
 mode="max")

analysis_sigopt = tune.run(
 train_wrapper,
 search_alg=algo,
 verbose=1,
 **tune_opts)

analysis_sigopt.results_df

Visualize Ray Tune results
a = analysis.results_df[['timestamp', 'Accuracy']]
s = analysis_sigopt.results_df[['timestamp', 'Accuracy']]
a['timestamp'] -= a['timestamp'].min()
s['timestamp'] -= s['timestamp'].min()
ax = a.plot.scatter('timestamp', 'Accuracy', c='b',

label='Random Search- Acc %0.3f%%' % a['Accuracy'].max())
s.plot.scatter('timestamp', 'Accuracy', c='r', ax=ax,

label='SigOpt- Acc %0.3f%%' % s['Accuracy'].max(),
title='Accuracy vs time')

ax.legend(loc='lower right')

Interpreting SigOpt Results
In the example above, we used a limited number of sample points to allow the experiment to
complete quickly. If more data points are sampled, you might see a figure like the one shown in
Figure 2, which illustrates that SigOpt’s directed search finds better solutions more efficiently
than a random search.

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

47The Parallel Universe

SigOpt helps data scientists understand which parameters matter most for their NAS. We see
that the number of epochs has the biggest influence on the accuracy of the network, followed by
pooling layers, and then the number of convolutional filters (Figure 3). SigOpt searches this space
intelligently to find the best values more efficiently.

To help data scientists understand the influence of various parameters, SigOpt visualizes the
relative parameter importance with respect to the points sampled. Note that this is a bit of a
biased sample, as the points are chosen intelligently by the optimizer (instead of at random).

Figure 2. SigOpt directed search vs. random search

Figure 3. Determining which parameters matter the most

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

48The Parallel Universe

Given the relative importance of the parameters, we examine the relationship between
convolutional filter parameters nconv0 and nconv1 and find that this particular problem prefers
around 50 filters for nconv0 and a small number of filters for nconv1 (Figure 4). Any pair of
variables can be visualized in this plot.

A parallel coordinate plot shows the trajectory of the parameter search (Figure 5). In this case, the
highest scores are obtained with a larger number of epochs, pooling, and different combinations
of layer parameters. This plot shows what this particular problem prefers. If the dataset or
objective is changed, the preferred parameters may differ.

Figure 4. Visualizing the relationship between parameters

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

49The Parallel Universe

Understanding the relationships between the parameters helps data scientists better optimize
parameter values for the problem and better manage tradeoffs. Be sure to sign up for free access
to SigOpt, and start optimizing, tracking, and systematizing today.

Figure 5. Trajectory of the parameter search

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

50The Parallel Universe

Modern artificial intelligence (AI) and machine learning (ML) applications perform a range of
tasks that convert raw data into valuable insights. Data scientists create multiphase, end-to-end
pipelines for AI and ML applications (Figure 1). The phases include data ingestion, data cleaning,
data exploration, and feature engineering, followed by prototyping, model building, and, finally,
model deployment. The phases are often repeated many times, and it may be necessary to scale
the entire pipeline across a cluster and/or to deploy it to the cloud.

Meena Arunachalam, Principal Engineer, Intel Corporation

Optimized Frameworks and Libraries for
Intel® Processors

Performance
Optimizations for
End-to-End AI Pipelines

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

51The Parallel Universe

The Intel® oneAPI AI Analytics Toolkit provides high-performance APIs and Python* packages to
accelerate the phases of these pipelines (Figure 2).

Figure 1. End-to-end analytics pipeline

Figure 2. Intel AI Analytics Toolkit

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

52The Parallel Universe

Intel® Distribution of Modin*, with the OmniSci* DB engine, provides a scalable pandas API
by simply changing a single line of code. Modin* significantly improves the performance and
scalability of pandas dataframe processing.

For classical ML training and inference, the Intel oneAPI AI Analytics Toolkit contains Intel
Extension for Scikit-learn extension to accelerate common estimators (e.g., logistic regression,
singular value decomposition, principal component analysis, etc.), transformers, and clustering
algorithms (e.g., k-means, DBSCAN).

For gradient boosting, Intel also optimized the XGBoost* and CatBoost libraries, which provide
efficient parallel tree boosting used to solve many data science problems in a fast and accurate
manner.

Let’s look at two examples where the Intel oneAPI AI Analytics Toolkit helps data scientists
accelerate their AI pipelines:

1.	 Census: This workload trains a ridge regression model to predict education level using U.S.
census data (1970 to 2010, published by IPUMS).

2.	 PLAsTiCC Astronomical Classification: This workload is an open data challenge on Kaggle*
with the aim to classify objects in the night sky. It uses simulated astronomical time series data
to classify objects.

Both workloads have three broad phases:

1.	 Ingestion loads the numerical data into dataframes.

2.	 Preprocessing and Transformation runs a variety of ETL operations to clean and prepare the
data for modeling, such as dropping columns, dealing with missing values, type conversions,
arithmetic operations, and aggregation.

3.	 Data Modeling creates separate training and test sets, model building and training, model
validation, and inference.

Figure 3 shows the breakdown by phase for both workloads, which illustrates the importance of
optimizing each phase to speed up the entire end-to-end pipeline.

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

53The Parallel Universe

Figures 4 and 5 show the relative performance and the subsequent speedups for each phase
using the Intel-optimized software stack (shown in blue) compared to the stock software (shown
in orange). On 2nd Generation Intel® Xeon® Scalable processors, the optimized software stack
gives a 10x speedup on Census and an 18x speedup for PLAsTiCC compared to the stock
software stack.

Figure 3. Breakdown by phase for each workload

Figure 4. End-to-end performance of the Census workload
showing the speedup for each phase

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

54The Parallel Universe

On Census, using the Intel Distribution of Modin* instead of pandas gives a 7x speedup for
readcsv and a 4x speedup for ETL operations. For training and prediction, using the Intel-
optimized scikit-learn instead of the stock package gives a 9x speedup for the train_test_split
function and a 59x speedup for training and inference. On PLAsTiCC, using the Intel Distribution
of Modin* gives a 69x speedup for readcsv and a 21x speedup for ETL operations. These
speedups are achieved through a variety of optimizations in the Intel oneAPI AI Analytics Toolkit,
including parallelization, vectorization, core scaling, improved memory layouts, cache reuse,
cache-friendly blocking, efficient memory bandwidth usage, and more effective use of the
processor instruction sets.

Figures 6 and 7 show the end-to-end performance of the two workloads on 2nd and 3rd
Generation Intel Xeon Scalable processors compared to 2nd and 3rd Generation AMD EPYC*
processors and NVIDIA Tesla* V100 and A100 processors. The same optimized software stack
is used on the Intel and AMD* CPUs, while the RAPIDS stack is used on the NVIDIA* GPUs. The
complete hardware and software configurations are included below.

Figure 5. End-to-end performance of the PLAsTiCC workload
showing the speedup for each phase

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

55The Parallel Universe

Figure 6. Competitive performance for all phases of the Census pipeline

Figure 7. Competitive performance for all phases of the PLAsTiCC pipeline

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

56The Parallel Universe

In this article, we demonstrate a significant performance boost (~10x–18x speedup) on Intel Xeon
processors using optimized software packages with simple drop-in replacement over stock data
analytics software. The results also show that CPUs and GPUs excel in different phases of the
pipelines, but the 3rd Generation Intel Xeon Platinum 8380 processor outperforms the NVIDIA*
V100 and is competitive with the NVIDIA* A100. The 3rd Generation Intel Xeon processor is also
cheaper and more power-efficient. These observations reinforce the notion that generality is
critical in data analytics.

You can get Modin*, XGboost*, the scikit-learn extension, and other optimized software for Intel®
architectures through many common channels such as Intel’s website, YUM, APT, Anaconda*, etc.
Select and download the distribution package that you prefer and follow the Get Started Guide
for post-installation instructions.

Hardware and Software Configurations
3rd Generation Intel Xeon Platinum 8380: dual-socket server, 40 cores per socket, 2.30 GHz base frequency,
Turbo mode enabled, hyperthreading enabled. OS: Ubuntu* 20.04.1 LTS, 512GB RAM (16x 32GB 3200MHz),
kernel: 5.4.0–64-generic, microcode: 0x8d055260, BIOS: SE5C620.86B.OR.64.2021.10.3.02.0417, CPU
governor: performance.

2nd Generation Intel Xeon Platinum 8280L: dual-socket server, 28 cores per socket, 2.70 GHz base frequency,
Turbo mode enabled, hyperthreading enabled. OS: Ubuntu* 20.04.1 LTS, 384GB RAM (12x 32GB 2933MHz),
kernel: 5.4.0–65-generic, microcode: 0x4003003, BIOS: SE5C620.86B.OR.64.2020.51.2.04.0651, CPU
governor: performance.

3rd Generation AMD EPYC* 7763: dual-socket server, 64 cores per socket, 1.50 GHz base frequency,
simultaneous multithreading enabled. OS: Red Hat Enterprise* Linux 8.3 (Ootpa), 1024 GB RAM (16x 64GB
3200MHz), kernel: 4.18.0–240.el8.x86_64, microcode: 0xa001119, BIOS: Gigabyte version M03, CPU
governor: performance.

2nd Generation AMD EPYC* 7742: dual-socket server, 64 cores per socket, 1.50 GHz base frequency,
simultaneous multithreading enabled. OS: Ubuntu* 20.04.1 LTS, 512 GB RAM (16x 32GB 3200MHz), kernel:
5.4.0–62-generic, microcode: 0x8301038, BIOS: American Megatrends Inc* 2.1c, CPU governor: performance.

NVIDIA Tesla* A100 GPU: Part of DGX-A100, dual-socket 2nd generation AMD EPYC* 7742 host CPU. OS:
Ubuntu* 18.04.5 LTS, 512 GB RAM (16x 32GB 3200MHz), kernel: 5.4.0–42-generic, microcode: 0x8301034,
BIOS revision 0.23, CPU governor: performance.

NVIDIA Tesla* V100 GPU: 32GB GPU, dual-socket 2nd generation Intel Xeon Platinum 8268 host CPU. OS:
CentOS* Linux release 7.8.2003, 384 GB RAM (12x 32GB 2933MHz), kernel: 5.4.69, microcode: 0x5003003,
BIOS SE5C620.86B.OR.64.2020.51.2.04.0651, CPU governor: performance.

CPU SW: Scikit-learn 0.24.1 accelerated by daal4py 2021.2, modin* 0.8.3, omniscidbe v5.4.1, Pandas 1.2.2,
XGBoost 1.3.3, Python 3.9.7

GPU SW: NVIDIA* RAPIDS 0.17, CUDA* Toolkit 11.0.221, Python* 3.7.9

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

57The Parallel Universe

Gradient Boosting for Data Science
There are plenty of well-known gradient boosting frameworks that deliver accuracy and
efficiency in real-world applications. They are regarded as a multipurpose tool to deal with many
types of machine learning problems.

According to the latest Kaggle* 2020 survey, 61.4% of data scientists use gradient boosting
(such as XGBoost*, CatBoost, or LightGBM) on a regular basis, and these frameworks are
more commonly used than the various types of neural networks. Therefore, reducing the
computational cost of gradient boosting is critical.

Kirill Shvets, Machine Learning Engineer, Intel Corporation

Tricks to Improve Machine Learning
Training Performance

Optimizing CatBoost
Performance by Up to 4x

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

58The Parallel Universe

This article covers the CatBoost gradient boosting library. Compared to other libraries, CatBoost
effectively handles categorical features and provides a larger variety of growing policies. For
example, the SymmetricTree policy reduces the variance of a trained model and significantly
improves training time. CatBoost v0.25 introduces optimizations that accelerate training up to 4x
compared to the previous release (Figure 1).

Let’s have a closer look at these latest CatBoost optimizations.

Optimization Details
The training stage of gradient boosting is quite complex. There are many computational kernels
requiring specific optimizations to mitigate irregular memory access patterns, parallelize loops
with dependencies, and eliminate branch misprediction. Some optimizations for memory-bound
workloads (e.g., using the smallest integer type, int8) were already implemented in earlier versions
of CatBoost; however, there were still opportunities for enhancement (i.e., using subtraction for
histogram calculation, reducing threading overheads, and introducing a more effective default
threading layer backend). Let’s go through these latest optimizations.

The Subtraction Trick
With the Depthwise growing policy, a tree is built level by level in each training iteration. This
common approach can be parallelized efficiently over the feature columns and over node
construction for nodes on the same tree level. Before training, CatBoost performs a quantization
of feature columns to bins. The number of bins is controlled by the max_bin parameter. During

Figure 1. Relative speedup of CatBoost v0.25 over v0.24.3 for the Higgs1m and
Airline1m datasets [1] and the Epsilon dataset [2]

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

59The Parallel Universe

training, CatBoost computes a histogram for each decision tree node. Histogram calculations
consist of finding the sum of gradients and Hessians for each bin.

Histogram calculations are the most compute-intensive part of the training stage; however, a
histogram’s additivity offers a solution to optimize the histogram calculation process. Because the
histogram of a parent node is equal to the sum of the histograms of its child nodes, there is no
need to compute the exact histogram for each node on the same level. Instead, it is possible to
calculate the histogram for the smallest child of the parent node, and then compute the largest
child’s histogram by subtracting the smallest child’s histogram from the previously saved parent’s
histogram.

This algorithmic optimization was added to the main branch of the CatBoost GitHub repository. It
significantly reduces the training time when the Depthwise growing policy is used (Table 1).

Threading Layer Improvements
The performance improvements described in the previous section would not have been possible
without threading fixes made by the CatBoost maintainers. Significant threading overhead was
observed with Intel® VTune™ Profiler. Much of this overhead was eliminated by increasing the size
of each task, but it did not solve the root cause of the issue.

We improved the threading layer by providing an alternative to the custom CatBoost threading
layer backend: the Intel® oneAPI Threading Building Blocks (oneTBB) library. Integrating the
mature, well-supported, and highly optimized oneTBB library into CatBoost resolved the
threading overhead problem by providing more effective task scheduling and better nested
threading (Table 2).

Table 1. The speedup in CatBoost training with the Depthwise policy going from
v0.24.3 to v0.25.

Table 2. The performance improvements in CatBoost training with the
SymmetricTree policy going from v0.24.3 to v0.25. Times are in seconds.

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

60The Parallel Universe

When using the SymmetricTree policy, oneTBB integration improved performance up to
1.5x over the previous threading layer. The CatBoost maintainers report up to 2x speedups.
When combined with the subtraction trick, the oneTBB threading layer improved the training
performance for the Depthwise policy (1.65x speedup for Higgs1m, 1.32x speedup for Airline1m,
and 1.17x speedup for Epsilon) and yielded total improvements of 3.9x for Higgs1m, 4.1x for
Airline1m, and 1.8x for Epsilon.

As of CatBoost v0.25, oneTBB is the default threading layer.

Conclusions
If you’re using CatBoost to train machine learning models, be sure to use the latest version. Up to
4x speedup can be obtained from the optimizations in v0.25, and there’s still more that can be
done to improve CatBoost performance. Further core scalability improvements, better memory
bandwidth utilization, and vector instructions usage are just a few examples that we expect to be
added in future releases.

Hardware and Software Configurations
Intel® Xeon® Platinum 8280L (2nd generation Intel Xeon processors): 2 sockets; 28 cores per
socket; HT: on; Turbo: on; total memory of 384 GB (12 slots/16 GB/2933 MHz). CatBoost 0.24.3
(before optimizations), 0.25 (after optimizations); NumPy 1.15.1; Scikit-learn 0.24.1, oneTBB
2021.2.

Training Parameters
Higgs1m [1] and Airline1m [1]:
{iterations=1000, learning_rate=0.1, grow_policy=’Depthwise/SymmetricTree’,
score_function=’L2′, border_count=256, scale_pos_weight=2, l2_leaf_reg=1,logging_
level=’Silent’, depth=8}

Epsilon [2]:
{max_depth: 8, learning_rate: 0.1, reg_lambda: 0, iterations=500, grow_
policy=’Depthwise/SymmetricTree’, logging_level=’Silent’}

1. The Airline1m and Higgs1m datasets are available in the dmlc/xgboost benchmark repository.
2. The Epsilom dataset is available in the Nvidia benchmark repository.

	Intel technologies may require enabled hardware, software or service activation. Learn more at intel.com or from the OEM or retailer.
Your costs and results may vary.
Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.
Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific
to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice. Notice Revision #20110804. https://software.intel.com/en-us/
articles/optimization-notice
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and
functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to
assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.
See backup for configuration details. For more complete information about performance and benchmark results, visit www.intel.com/
benchmarks.
Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See
configuration disclosure for details. No product or component can be absolutely secure.
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.
Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.
	© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands
may be claimed as the property of others.
	Printed in USA	 707/IH	 		 Please Recycle.

